Scuola Politecnica- Corso di laurea magistrale in Internet and Multimedia Engineering Classe LM-27

REGOLAMENTO DIDATTICO

Descrizione funzionamento corso di laurea

Art. 1. Premessa e ambito di competenza

Il presente Regolamento, in conformità allo Statuto ed al Regolamento Didattico di Ateneo (parte generale e parte speciale), disciplina gli aspetti organizzativi dell'attività didattica del corso di laurea magistrale in Internet and Multimedia Engineering, nonché ogni diversa materia ad esso devoluta da altre fonti legislative e regolamentari.

Il Regolamento didattico del corso di Laurea Magistrale in Internet and Multimedia Engineering è deliberato, ai sensi dell'articolo 18, commi 3 e 4 del Regolamento Didattico di Ateneo, parte generale, dal Consiglio dei Corsi di Studio (CCS) di Ingegneria delle Telecomunicazioni a maggioranza dei componenti e sottoposto all'approvazione del consiglio del dipartimento di riferimento (e dei consigli degli eventuali dipartimenti associati), sentita la Scuola Politecnica previo parere favorevole della commissione paritetica di scuola e di dipartimento, ove esistente.

Art. 2. Requisiti di ammissione e modalità di verifica della preparazione individuale

L'ammissione alla Laurea Magistrale in Internet and Multimedia Engineering è subordinata al possesso di specifici requisiti curricolari e di adeguatezza della preparazione personale. I requisiti curriculari necessari per l'iscrizione al Corso di Laurea Magistrale in Internet and Multimedia Engineering devono essere acquisiti prima dell'immatricolazione e consistono in conoscenze equivalenti a quelle previste dagli obiettivi formativi generali delle Lauree della Classe Ingegneria dell'informazione (Classe 9 del DM 509/1999 e Classe L-8 del DM 270/2004).

In riferimento ai requisiti curriculari, per l'accesso alla Laurea Magistrale in Internet and Multimedia Engineering, occorre:

- essere in possesso di Laurea, Laurea Specialistica o Laurea Magistrale, di cui al DM 509/1999 o DM 270/2004, oppure una Laurea quinquennale (ante DM 509/1999), o titoli esteri equivalenti;
- essere in possesso di almeno 36 CFU, o conoscenze equivalenti, acquisiti in un qualunque corso universitario (Laurea, Laurea Specialistica, Laurea Magistrale, Master Universitari di primo e secondo livello) nei settori scientifico-disciplinari indicati per le attività formative di base previste dalle Lauree della Classe L-8 Ingegneria dell'Informazione;
- essere in possesso di almeno 45 CFU, o conoscenze equivalenti, acquisiti in un qualunque corso universitario (Laurea, Laurea Specialistica, Laurea Magistrale, Master Universitari di primo e secondo livello) nei settori scientifico disciplinari indicati per le attività formative caratterizzanti delle Lauree della Classe L-8 Ingegneria dell'Informazione, negli ambiti disciplinari Ingegneria dell'Automazione, Ingegneria Biomedica, Ingegneria Elettronica, Ingegneria Informatica, Ingegneria delle Telecomunicazioni.

Le seguenti Lauree erogate dall'Ateneo di Genova soddisfano i requisiti curricolari richiesti dalla laurea magistrale:

- Ingegneria Elettronica e Tecnologie dell'Informazione
- Ingegneria delle Telecomunicazioni
- Ingegneria Informatica
- Ingegneria Biomedica

Nel caso di possesso di lauree differenti da quelle indicate nell'ordinamento didattico del corso, il CCS verificherà la presenza dei requisiti curricolari o delle conoscenze equivalenti, sulla base degli esami sostenuti dallo studente nel corso di laurea di provenienza, nonché la presenza di eventuali esami extracurricolari, le attività di stage e le esperienze lavorative maturate.

Ai fini dell'ammissione al corso di laurea magistrale gli studenti, in possesso dei requisiti curricolari, dovranno sostenere con esito positivo una prova per la verifica della preparazione personale, salvo i casi disposti dall'ultimo comma.

La prova di verifica sarà svolta sotto forma di colloquio pubblico o di test scritto, e sarà finalizzata ad accertare la preparazione generale dello studente con particolare riferimento alle materie ingegneristiche di base specifiche dell'ingegneria delle telecomunicazioni e con particolare riferimento a:

- 1. scienze matematiche/fisiche;
- 2. architetture dei calcolatori, strutture dati e algoritmi;
- 3. elettronica analogica e digitale;
- 4. trattamento e trasmissione di segnali;
- 5. reti e sistemi di telecomunicazioni:

La prova è sostenuta davanti ad una Commissione nominata dal CCS e composta da docenti afferenti al CCS.

Nel Bando per l'Ammissione ai Corsi di Laurea magistrale della Scuola Politecnica e sul sito web del corso di studi sono indicati: la composizione della Commissione d'esame, le modalità della prova, il luogo e la data, gli argomenti oggetto d'esame, i criteri di valutazione dei candidati. Ai fini della valutazione dello studente la Commissione terrà conto anche del curriculum ottenuto nel percorso di laurea triennale. L'esito della prova prevede la sola dicitura "superato", "non superato".

L'adeguatezza della preparazione personale è automaticamente verificata per coloro che hanno conseguito la laurea triennale, italiana od estera, o titolo giudicato equivalente in sede di accertamento dei requisiti curricolari, con una votazione finale di almeno 9/10 del voto massimo previsto dalla propria laurea o che hanno conseguito una votazione finale corrispondente almeno alla classifica "A" del sistema ECTS.

Art. 3. Attività formative

L'elenco degli insegnamenti e delle altre attività formative attivabili, è riportato nell'apposito allegato (ALL.1) che costituisce parte integrante del presente regolamento.

Per ogni insegnamento è individuato un docente responsabile. E' docente responsabile di un insegnamento chi ne sia titolare a norma di legge, ovvero colui al quale il Consiglio di Dipartimento abbia attribuito la responsabilità stessa in sede di affidamento dei compiti didattici ai docenti. L'elenco degli insegnamenti e delle altre attività formative attivabili nella coorte 2017/2019, è riportato al termine del presente documento.

La lingua usata per erogare le attività formative (lezioni, esercitazioni, laboratori) è l'Inglese o un'altra lingua della UE ove espressamente deliberato dal CCS.

Nell'allegato (ALL.1) al presente regolamento è specificata la lingua in cui viene erogata ogni attività formativa.

Art. 4. Curricula

Il Corso di Laurea Magistrale è articolato in un unico curriculum.

Art. 5. Impegno orario complessivo

La definizione della frazione oraria dedicata a lezioni o attività didattiche equivalenti è stabilita, per ogni insegnamento, dal CCS e specificata nella parte speciale del Regolamento. In ogni caso si assumono i seguenti intervalli di variabilità della corrispondenza ore aula/CFU: 8 ÷ 10 ore di lezione o di attività didattica assistita.

Il Direttore del Dipartimento DITEN e il Coordinatore del CCS sono incaricati di verificare il rispetto delle predette prescrizioni, anche ai fini della pubblicazione dei programmi dei corsi.

Art. 6. Piani di studio e propedeuticità

Gli studenti possono iscriversi a tempo pieno o a tempo parziale; per le due tipologie di studente sono previsti differenti diritti e doveri.

Lo studente a tempo pieno svolge la propria attività formativa tenendo conto del piano di studio predisposto dal Corso di Laurea Magistrale, distinto per anni di corso e pubblicato nel Manifesto degli studi. Il piano di studio formulato dallo studente deve contenere l'indicazione delle attività formative, con i relativi crediti che intende conseguire, previsti dal piano di studio ufficiale per tale periodo didattico, da un minimo di 45 ad un massimo di 65 dei crediti previsti in ogni anno.

Lo studente a tempo parziale è tenuto a presentare un piano di studio individuale specificando il numero di crediti che intende inserire. L'iscrizione degli studenti a tempo pieno e a tempo parziale è disciplinata dal Regolamento di Ateneo per gli studenti tenuto conto delle disposizioni operative deliberate dagli Organi centrali di governo ed indicate nella Guida dello studente (pubblicata annualmente e disponibile presso il

Servizio Orientamento, lo Sportello dello Studente della Scuola Politecnica e sul sito web dell'Università).

Il percorso formativo dello studente può essere vincolato attraverso un sistema di propedeuticità, indicate per ciascun insegnamento nel Manifesto degli studi.

Il CCS, con esplicita e motivata deliberazione, può autorizzare gli studenti che nell'anno accademico precedente hanno dimostrato un rendimento negli studi particolarmente elevato ad inserire nel proprio piano di studio un numero di crediti superiore a 65, ma in ogni caso non superiore a 75.

Per "rendimento particolarmente elevato" si intende che lo studente abbia superato tutti gli esami del proprio piano di studio entro il mese di settembre.

La modalità e il termine per la presentazione del piano di studio sono stabiliti annualmente dalla Scuola Politecnica e riportate nel Manifesto degli studi.

Art. 7. Frequenza e modalità di svolgimento delle attività didattiche

Gli insegnamenti possono assumere la forma di: (a) lezioni, anche a distanza mediante mezzi telematici; (b) esercitazioni pratiche; (c) esercitazioni in laboratorio.

Il profilo articolato e la natura impegnativa delle lezioni tenute nell'ambito dei vari corsi di studio offerti dalla Scuola Politecnica rendono la frequenza alle attività formative fortemente consigliata per una adeguata comprensione degli argomenti e quindi per una buona riuscita negli esami.

Il calendario delle lezioni è articolato in semestri. Di norma, il semestre è suddiviso in almeno 12 settimane di lezione più almeno 4 settimane complessive per prove di verifica ed esami di profitto. Il periodo destinato agli esami di profitto termina con l'inizio delle lezioni del semestre successivo.

L'orario delle lezioni per l'intero anno accademico è pubblicato sul sito web della Scuola Politecnica prima dell'inizio delle lezioni dell'anno accademico. L'orario delle lezioni garantisce la possibilità di frequenza per anni di corso previsti dal vigente Manifesto degli studi. Per ragioni pratiche non è garantita la compatibilità dell'orario per tutte le scelte formalmente possibili degli insegnamenti opzionali. Gli studenti devono quindi formulare il proprio piano di studio tenendo conto dell'orario delle lezioni.

Art. 8. Esami e altre verifiche del profitto

Gli esami di profitto possono essere svolti in forma scritta, orale, o scritta e orale, secondo le modalità indicate nelle schede di ciascun insegnamento pubblicato sul sito web del corso di laurea magistrale.

A richiesta, possono essere previste specifiche modalità di verifica dell'apprendimento che tengano conto delle esigenze di studenti disabili e di studenti con disturbi specifici dell'apprendimento (D.S.A.), in conformità all'art. 29 comma 4 del Regolamento Didattico di Ateneo.

Nel caso di insegnamenti strutturati in moduli con più docenti, questi partecipano collegialmente alla valutazione complessiva del profitto dello studente che non può, comunque, essere frazionata in valutazioni separate sui singoli moduli.

Il calendario degli esami di profitto è stabilito entro il 30 settembre per l'anno accademico successivo e viene pubblicato sul sito web del corso di laurea magistrale. Il calendario delle eventuali prove di verifica in itinere è stabilito dal CCS e comunicato agli studenti all'inizio di ogni ciclo didattico.

Gli esami si svolgono nei periodi di interruzione delle lezioni. Per gli studenti non soggetti a obblighi di frequenza gli esami possono essere svolti in ogni periodo dell'anno.

Tutte le verifiche del profitto relative alle attività formative debbono essere superate dallo studente almeno venti giorni prima della data prevista per il sostenimento della prova finale.

L'esito dell'esame, con la votazione conseguita, è verbalizzato secondo quanto previsto all'art. 29 del regolamento didattico di Ateneo.

Art. 9. Riconoscimento di crediti

Il CCS delibera sull'approvazione delle domande di passaggio o trasferimento da un altro corso di studi dell'Ateneo o di altre Università secondo le norme previste dal Regolamento didattico di Ateneo, art. 21. Delibera altresì il riconoscimento, quale credito formativo, per un numero massimo di 12 CFU, di conoscenze e abilità professionali certificate ai sensi della normativa vigente.

Nella valutazione delle domande di passaggio si terrà conto delle specificità didattiche e dell'attualità dei contenuti formativi dei singoli esami sostenuti, riservandosi di stabilire di volta in volta eventuali forme di verifica ed esami integrativi. Nel quadro della normativa nazionale e regionale su alternanza formazione/lavoro, è possibile per il corso di studio prevedere, per studenti selezionati, percorsi di apprendimento che tengano conto anche di esperienze lavorative svolte presso aziende convenzionate.

Art. 10. Mobilità, studi compiuti all'estero, scambi internazionali

Il CCS incoraggia fortemente le attività di internazionalizzazione, in particolare la partecipazione degli studenti ai programmi di mobilità e di scambi internazionali. A tal fine garantisce, secondo le modalità previste dalle norme vigenti, il riconoscimento dei crediti formativi conseguiti all'interno di tali programmi, e organizza le attività didattiche opportunamente in modo da rendere agevoli ed efficaci tali attività.

Il CCS riconosce agli studenti iscritti, che abbiano regolarmente svolto e completato un periodo di studi all'estero, gli esami sostenuti fuori sede e il conseguimento dei relativi crediti che lo studente intenda sostituire ad esami del proprio piano di studi.

Ai fini del riconoscimento di tali esami, lo studente all'atto della compilazione del piano delle attività formative che intende seguire nell'ateneo estero, dovrà produrre idonea documentazione

comprovante l'equivalenza dei contenuti tra l'insegnamento impartito all'estero e l'insegnamento che intende sostituire, impartito nel corso di Laurea Magistrale in Internet and Multimedia Engineering. L'equivalenza è valutata dal CCS.

La conversione dei voti avverrà secondo criteri approvati dal CCS, congruenti con il sistema europeo ECTS.

Art. 11. Modalità della prova finale

La prova finale consiste nella discussione di un elaborato scritto, tendente ad accertare la preparazione tecnico-scientifica e professionale del candidato.

Ai fini del conseguimento della laurea magistrale, l'elaborato finale consiste nella redazione di una tesi, elaborata dallo studente in modo originale sotto la guida di uno o più relatori, su un argomento definito attinente ad una disciplina di cui abbia superato l'esame. In ogni caso tra i relatori deve essere presente almeno un docente della Scuola Politecnica e/o del Dipartimento di riferimento o associato.

La tesi può essere redatta anche in lingua Inglese; in caso di utilizzo di altra lingua della UE è necessaria l'autorizzazione del CCS. In questi casi la tesi deve essere corredata dal titolo e da un ampio sommario in italiano.

La tesi dovrà rivelare le capacità dello studente nell'affrontare tematiche di ricerca e/o di tipo applicativo. La tesi dovrà essere costituita da un progetto e/o dallo sviluppo di un'applicazione che proponga soluzioni innovative rispetto allo stato dell'arte e dimostri le capacità di analisi e di progetto dello studente.

La tesi dovrà altresì rivelare:

- √ adeguata preparazione nelle discipline caratterizzanti la laurea magistrale;
- ✓ adeguata preparazione ingegneristica;
- ✓ corretto uso delle fonti e della bibliografia;
- √ capacità sistematiche e argomentative;
- √ chiarezza nell'esposizione;
- √ capacità progettuale e sperimentale;
- ✓ capacità critica.

La Commissione per la prova finale è composta da almeno cinque componenti compreso il Presidente ed è nominata dal Direttore del dipartimento cui afferisce il Corso di Laurea Magistrale. Le modalità di svolgimento della prova finale consistono nella presentazione orale della tesi di laurea da parte dello studente alla commissione per la prova finale, seguita da una discussione sulle questioni eventualmente poste dai membri della commissione.

La valutazione della prova finale da parte della commissione avviene, in caso di superamento della stessa, attribuendo un incremento, variabile da 0 ad un massimo stabilito dalla Scuola di concerto con i Dipartimenti e riportato nel Manifesto degli Studi, alla media ponderata dei voti riportati nelle prove di verifica relative ad attività formative che prevedono una votazione finale, assumendo come peso il numero di crediti associati alla singola attività formativa.

Art. 12. Orientamento e tutorato

La Scuola Politecnica, di concerto con il Dipartimento di afferenza del Corso di Laurea Magistrale, organizza e gestisce un servizio di tutorato per l'accoglienza e il sostegno degli studenti, al fine di prevenire la dispersione e il ritardo negli studi e di promuovere una proficua partecipazione attiva alla vita universitaria in tutte le sue forme.

Il CCS individua al suo interno un numero di tutor in proporzione al numero degli studenti iscritti.

Art. 13. Verifica dell'obsolescenza dei crediti

I crediti acquisiti nell'ambito del corso di laurea magistrale hanno validità per 4 anni.

Trascorso il periodo indicato, i crediti acquisiti debbono essere convalidati con apposita delibera qualora il CCS riconosca la non obsolescenza dei relativi contenuti formativi.

Qualora il CCS riconosca l'obsolescenza anche di una sola parte dei relativi contenuti formativi, lo stesso CCS stabilisce le prove integrative che dovranno essere sostenute dallo studente, definendo gli argomenti delle stesse e le modalità di verifica.

Una volta superate le verifiche previste, il CCS convalida i crediti acquisiti con apposita delibera. Qualora la relativa attività formativa preveda una votazione, la stessa potrà essere variata rispetto a quella precedentemente ottenuta, su proposta della Commissione d'esame che ha proceduto alla verifica.

Art. 14 Manifesto degli Studi

Il Dipartimento, sentita la Scuola Politecnica, pubblica annualmente il Manifesto degli studi. Nel Manifesto sono indicate le principali disposizioni dell'ordinamento didattico e del regolamento didattico del corso di laurea magistrale, a cui eventualmente si aggiungono indicazioni integrative. Il Manifesto degli studi del corso di laurea magistrale contiene l'elenco degli insegnamenti attivati per l'anno accademico in questione. Le schede dei singoli insegnamenti sono pubblicati sul sito web del Corso di Laurea Magistrale.

Allegato 1 al Regolamento didattico del Corso di Laurea Magistrale in Multimedia Signal Processing and Telecommunication Networks della Scuola Politecnica

Elenco delle attività formative attivabili e relativi obiettivi formativi

Codice_ ins	Nome_ins	Nome_ins EN	CF U	SSD	Tipologia	Ambito	Ling ua	Propedeuti cità	Obiettivi formativi	riserv ate attivit à didatti ca assisti ta	Ore riservat e allo studio person ale
56632	COMPUTER GRAPHICS	COMPUTER GRAPHICS	5	ING- INF/0	CARATTERIZZ	Ingegneria delle Telecomunica	Ingle		Raster graphics algorithms for drawing 2D primitives. Geometrical transformations and Projections. Curves and surfaces representation. Illumination and shading. Visible-surface determination. Introduction to OpenGI	50	75
30032	GRAPHICS	GRAPHICS	5	3	ANII	ZIUIII	se		The course is	50	13
05004	DIGITAL COMMUNICATIO	DIGITAL COMMUNICATIO	40	ING- INF/0	CARATTERIZZ	Ingegneria delle Telecomunica	Ingle		aimed at providing the bases of digital	100	150
	_	COMPUTER GRAPHICS DIGITAL COMMUNICATIO	Nome_ins Nome_ins EN COMPUTER COMPUTER GRAPHICS DIGITAL COMMUNICATIO DIGITAL COMMUNICATIO	Nome_ins Nome_ins EN U COMPUTER COMPUTER GRAPHICS 5 DIGITAL COMMUNICATIO DIGITAL COMMUNICATIO	Nome_ins Nome_ins EN U SSD COMPUTER COMPUTER GRAPHICS 5 3 DIGITAL COMMUNICATIO DIGITAL COMMUNICATIO INF/0	Nome_ins Nome_ins EN U SSD Tipologia COMPUTER COMPUTER GRAPHICS STORY STORY	Nome_ins Nome_ins EN U SSD Tipologia Ambito COMPUTER COMPUTER GRAPHICS 5 3 ING- INF/0 CARATTERIZZ ANTI Ingegneria delle Telecomunica zioni DIGITAL COMMUNICATIO DIGITAL COMMUNICATIO DIGITAL COMMUNICATIO CARATTERIZZ Ingegneria delle ING- ING- CARATTERIZZ Ingegneria delle Telecomunica zioni	Nome_ins Nome_ins EN U SSD Tipologia Ambito ua COMPUTER COMPUTER GRAPHICS 5 INF/0 CARATTERIZZ ANTI Ingegneria delle Telecomunica zioni se DIGITAL COMMUNICATIO DIGITAL COMMUNICATIO INF/0 CARATTERIZZ Telecomunica Ingle Telecomunica Ingle Ingegneria delle Telecomunica Ingle Ingegneria delle Telecomunica Ingle Ingegneria delle Telecomunica Ingle Ingegneria delle Telecomunica Ingle	Nome_ins Nome_ins EN U SSD Tipologia Ambito ua cità COMPUTER COMPUTER GRAPHICS 5 INF/0 CARATTERIZZ ANTI Ingegneria delle Telecomunica zioni se DIGITAL COMMUNICATIO DIGITAL COMMUNICATIO CARATTERIZZ Telecomunica Ingle delle Telecomunica delle Telecomunica zioni se	Nome_ins	Codice_ ins Nome_ins Nome_ins EN

									s: the baseband and bandpass transmissions will be presented and discussed, as well as the main channel coding techniques. The goal is to give the students an adequate knowledge needed to understand the key elements for designing and developing modern telecommunicat ion systems.		
1	66202	MATHEMATICAL METHODS AND OPERATIONS RESEARCH	MATHEMATICAL METHODS AND OPERATIONS RESEARCH	10		AFFINI O INTEGRATIVE	Attività Formative Affini o Integrative			0	0
1	66204	OPERATIONS RESEARCH	OPERATIONS RESEARCH	5	MAT/ 09	AFFINI O INTEGRATIVE	Attività Formative Affini o Integrative	Ingle se	Linear and nonlinear programming. Linear and nonlinear least squares. Optimal control. Optimal filtering.	50	75

									•			
										After the first		
										part of the		
										course the		
										students will be		
										able to use		
										mathematical		
										methods to		
										describe real-		
										world		
										phenomena,		
										such as heat		
										diffusion and		
										wave		
										propagation.		
										More		
										specifically,		
										they will be able		
										to classify and		
										manage the		
										main analytical		
										solution		
										methods for		
										linear partial		
										differential		
										equations,		
										together with		
										some		
										techniques for		
										their numerical		
										solution. In the		
										second part,		
										the students will		
										learn to		
							Attività			manage		
					1		Formative			multistage		
		MATHEMATICAL	MATHEMATICAL		MAT/	AFFINI O	Affini o	Ingle		optimization		
1	86829	METHODS	METHODS	5	07	INTEGRATIVE	Integrative	se		problems by	50	75

									means of dynamic programming, which will be employed also to solve classical problems on graphs, such as the shortest path and shortest spanning tree, together with other algorithms.		
1	90138	MOBILE COMMUNICATIO NS	MOBILE COMMUNICATIO NS	10	ING- INF/0 3	CARATTERIZZ ANTI	Ingegneria delle Telecomunica zioni			0	0
1	90139	PHYSICAL LAYER MODELS AND TECHNIQUES FOR SOFTWARE RADIO	PHYSICAL LAYER MODELS AND TECHNIQUES FOR SOFTWARE RADIO	5	ING- INF/0 3	CARATTERIZZ ANTI	Ingegneria delle Telecomunica zioni	Ingle se	Mathematical models for radio transmission: (20) Radio Channel models; Free space model; Probabilistic rain model; Multipath timevariant general statistical model (Time variant pulse response, First order channel models	50	75

	<u>-</u>		i	 i i	
					(Fading
					(Rayleigh, Rice,
					Nagakami));
					Second order
					models.
					Radio
					transmission
					system models:
					Frequency
					selectivity and
					temporal
					fading; Slow
					and fast fading;
					Diversity
					transmission
					(frequency,
					time, space);
					Wideband
					transmissions
					as frequency
					selective
					channels;
					Channel
					models and
					rake receivers.
					Wideband
					Digital radio
					transmission:
					systems and
					techniques
					(20): Multiple
					Access
					techniques
					overview;
					Wideband
					modulations:
					Spread

									Spectrum: General concepts, Direct Sequence Spread Spectrum and CDMA, Orthogonal Frequency Division Modulation (OFDM) Software and Cognitive Radio (10): Software radio architectures;. from software to cognitive radio	
1	90140	PERVASIVE COMMUNICATIO N AND CONTEXT AWARENESS	PERVASIVE COMMUNICATIO N AND CONTEXT AWARENESS	5	ING- INF/0 3	CARATTERIZZ ANTI	Ingegneria delle Telecomunica zioni	Ingle se	The Internet society is based on technological solution for continuative and pervasive connection of persons and objects (IoT). In the course, different radio technologies are investigated and compared able to	75

				guarantee such
				global
				connection,
				including
				terrestrial and
				satellite
				solutions. Radio
				coverage
				strategies will
				be examined by
				oomparing
				comparing different cell
				planning
				methodologies.
				Terrestrial
				mobile
				telephone
				standards like
				GSM/GPRS,
				WCDMA and
				LTE will be
				examined and
				compared with
				satellite
				technologies
				like Globalstar
				and Iridium.
				The
				smartphone
				platform will be
				considered as a
				multi-standard
				platform able to
				connect
				persons and
				things beyond
				the telephone

									network, including Wifi, Bluetooth, RFID, BLE, NFC. The added value represented by position estimation of terminal, persons and things will be considered with reference to applications for logistics, transportation and health. In such view, methodologies based on terrestrial radio fingerprinting and satellite-based global		
1	90147	INTERNET TECHNOLOGIES: ARCHITECTURES AND PROTOCOLS	INTERNET TECHNOLOGIES: ARCHITECTURES AND PROTOCOLS	10	ING- INF/0 3	CARATTERIZZ ANTI	Ingegneria delle Telecomunica zioni	Ingle se	• Review of the Internet Architecture and Protocols o IPv4 review (management of IP addresses); IP	100	150

			,	
				routing
				algorithms and
				protocols
				review;
				Multicast; IPv6;
				UDP/TCP; Flow
				and congestion
				control in
				packet
				networks;
				Application
				layer
				Network and
				Computer
				Security
				o Basic
				concepts;
				Algorithms;
				Standard
				protocols;
				Vulnerability of
				networks;
				Summary of the
				local (Italian)
				regulations;
				Computer
				security
				• Wireless
				Network
				architecture
				and Protocols
				o Wi-Fi (IEEE
				802.11);
				Bluetooth (IEEE
				802.15.1)
				Quality of
				Service (QoS)

and Session Description Protocol (S	on	
ELECTROMAGNE ELECTROMAGNE ING- INF/0 CARATTERIZZ Telecomunica		
1 90315 PROPAGATION PROPAGATION 10 2 ANTI zioni	0	0
The cours provides knowledge skills ING- INF/0 CARATTERIZZ Telecomunica Ingle guided 1 90316 ANTENNAS ANTENNAS 5 2 ANTI zioni se electroma	ge and	75

					propagation,	
					with reference	
					to both their	
					working	
					principles and	
					their use in	
					different	
					applicative	
					fields. The	
					following main	
					topics will be	
					addressed.	
					Fundamentals	
					of	
					electromagnetic	
					radiation and	
					antenna	
					parameters.	
					Linear	
					antennas,	
					aperture	
					antennas,	
					reflector	
					antennas,	
					printed	
					antennas.	
					Antenna	
					Arrays. MIMO	
					systems for	
					multimedia	
					communication	
					s. Smart and	
					reconfigurable	
					antennas. Wide	
					band antennas	
					for high–speed	
					internet links.	
					IIILGIIIGI IIIIKS.	

									s ii a	Antenna systems for ndustrial, civil and biomedical applications.		
		TIC	ELECTROMAGNE		ING- INF/0	CARATTERIZZ	Ingegneria delle Telecomunica	Ingle	C	Fundamentals of guided propagation. Longitudinal- gransverse decompositions of Maxwell's equations, FEM, TE, TM modes, rectangular waveguides, higher TE and TM modes, operating candwidth, cower transfer an attenuation, group velocity in waveguides, reflection model of waveguide propagation, dielectric slab guides. Oblique incidence and Snel's laws, Zenneck surface wave, surface		
7	90317	PROPAGATION	PROPAGATION	5	2	ANTI	zioni	se	l p	olasmons.	50	75

1	Í	Í	l	1	1	İ	İ	I	I	la, ,	ı	1 1
										Plasmonic		
										waveguides,		
										plasmonic and		
										oscillatory		
										modes, MDM		
										and DMD		
										configurations.		
										RFID		
										technology,		
										active and		
										passive RFID		
										tags, plasmonic		
										RFID.		
										The course,		
										after a few		
										elements of		
										underwater		
										acoustics,		
										describes the		
										theory and		
										techniques for		
										the processing		
										of signals		
										produced or		
										received by		
										arrays of		
										transducers.		
										Special		
										emphasis is		
										given to image		
										generation. An		
	1									overview of		
										some important		
							Ingegneria			applications is		
					ING-		delle			provided,		
		ARRAY SIGNAL	ARRAY SIGNAL		INF/0	CARATTERIZZ	Telecomunica	Ingle		including sonar		
2	60255	PROCESSING	PROCESSING	5	3	ANTI	zioni	se		systems,	50	75

									medical		
									ultrasound, and		
									microphone		
									arrays		
									The course		
									aims at		
									providing theory		
									and techniques		
									for architectural		
									and functional		
									design of		
									interactive		
									cognitive		
									dynamic	1	
									systems.		
									Topics are		
									related to data		
									fusion,		
									mutilevel		
									bayesian state		
									estimation and		
									their application		
									to cognitive		
									video and radio		
									domains.		
									Project based		
									learning allows		
							Ingegneria		students to		
		COGNITIVE	COGNITIVE		ING-		delle		acquire design		
	00070	TELECOMMUNIC	TELECOMMUNIC	_	INF/0	CARATTERIZZ	Telecomunica	Ingle	capabilities in		
2	60279	ATION SYSTEMS	ATION SYSTEMS	5	3	ANTI	zioni	se	the field.	50	75
									T	1	
									The Master		
									thesis consists		
						DDO) (A	D. d. D.		of a report on a	1	
	00475	MACTED THECK	MACTED THEOLO	40		PROVA	Per la Prova	Ingle	specific topic		450
2	66175	MASTER THESIS	MASTER THESIS	18		FINALE	Finale	se	investigated	0	450

									under the tutoring of one or more professors. It should provide evidence of the student's ability to carry out independent investigations and to present the results in a clear and systematic form.		
2	66262	RESEARCH METHODOLOGY	RESEARCH METHODOLOGY	2		ALTRE ATTIVITA'	Tirocini Formativi e di Orientamento	Ingle se	The activity is meant to be developed as a preparatory work for the realization of the master thesis. Its target is providing the students with a methodological and scientific approach, to enable a research and development vision toward the final Master of Science project.	0	50
2	00141	IMAGE	IMAGE	10	ING-	CARATTERIZZ	Ingegneria delle				
2	90141	PROCESSING	PROCESSING	10	INF/0	ANTI	uelle			0	0

		AND RECOGNITION	AND RECOGNITION		3		Telecomunica zioni				
		RECOGNITION	RECOGNITION				210111		In this course		
									the basic		
									techniques of		
									digital signal		
									and image		
									processing are		
									presented and		
									their application		
									to signals and		
									images from		
									real domains		
									are discussed:		
									Digital Image		
									Representation		
									and Color		
									Spaces		
									• Image		
									Filtering (linear		
									and non-linear)		
									• Edge		
									Detection		
									• Image		
									Segmentation		
									Texture		
									Analysis		
									Mathematical		
									Morphology		
									Moments and		
									Hough		
									Transform		
							Ingegneria		Adaptive		
					ING-		delle		Processing,		
		DIGITAL IMAGE	DIGITAL IMAGE		INF/0	CARATTERIZZ	Telecomunica	Ingle	Multiscale, Data		
2	90142	PROCESSING	PROCESSING	5	3	ANTI	zioni	se	Fusion	50	75
2	90143	IMAGE AND	IMAGE AND	5	ING-	CARATTERIZZ	Ingegneria	Ingle	In this course	50	75

Density Estimate • Feature Reduction • Linear and Nonlinear Classifiers (k- nn, SVMs, NNs). • Error Probability of Supervised Classifiers • Unsupervised Classifiers (Clustering) • Fuzzy Classifiers	Classifiers (Clustering) • Fuzzy
---	----------------------------------

		PERFORMANCE EVALUATION	PERFORMANCE EVALUATION		3		Telecomunica zioni				
		LVALOATION	LVALOATION				210111		Definition of		
									QoS, SLA		
									(Service Level		
									Agreement)		
									and SLS		
									(Service Level		
									Specification).		
									 Definition of 		
									heterogeneity.		
									 QoS-oriented 		
									technologies:		
									ATM, MPLS,		
									IPv4, IPv6, user		
									flow and traffic		
									class		
									identification		
									 Integrated 		
									Services,		
									Differentiated		
									Services and		
									DSCP		
									Assignation,		
									advantages and		
									drawbacks,		
									Network		
									control issues		
									versus time:		
									Traffic		
									Identification,		
									Traffic Shaping,		
									introduction to		
		QUALITY OF	QUALITY OF				Ingognaria		Scheduling,		
		SERVICE OVER	SERVICE OVER		ING-		Ingegneria delle		CAC		
						CADATTEDIZZ		lnele			
	00445	HETEROGENEOU		_	INF/0	CARATTERIZZ	Telecomunica	Ingle	(Feasibility	F0	75
2	90145	S NETWORKS	S NETWORKS	5	3	ANTI	zioni	se	Region,	50	75

	_		_		
				Equivalent	
				Bandwidth,	
				Bandwidth	
				Reservation),	
				QoS Routing.	
				• QoS over	
				Heterogeneous	
				Networks:	
				concepts and	
				problems,	
				Horizontal and	
				Vertical QoS	
				Mapping, QoS	
				Architectures,	
				QoS Gateway,	
				Relay Node	
				and Relay	
				Layer.	
				Software	
				Defined	
				Networking	
				(SDN):	
				introduction and	
				aim,	
				architecture,	
				OpenFlow and	
				Flow Table,	
				conclusions	
				and research	
				activities	
				• Delay	
				Tolerant	
				Networking	
				(DTN):	
				introduction and	
				aim,	
				architecture,	
				architecture,	

i	•		•			•	1				
									Bundle Layer,		
									CLA,		
									conclusions		
									and research		
									activities		
									Methods of		
									network		
									performance		
									evaluation:		
									analytical		
									models,		
									simulation,		
									experimental		
									measurements		
									Packet-level		
									and flow-level		
									models		
									 Elementary 		
									queueing		
									theory:		
									elements of a		
									queue,		
									statistics of		
									input and		
									service, general		
									results on		
									infinite- and		
									finite-buffer		
									queues, Little's		
									Theorem,		
									Kendall's		
									notation		
									Markovian		
							Ingegneria		queues:		
		NETWORK	NETWORK		ING-		delle		Poisson		
		PERFORMANCE	PERFORMANCE		INF/0	CARATTERIZZ	Telecomunica	Ingle	arrivals,		
2	90146	EVALUATION	EVALUATION	5	3	ANTI	zioni	se	exponential	50	75

									distribution, stationary distribution of general birthdeath systems; M/M/1, M/M/M/m, M/M/m/m, M/M/m • Discrete- and continuous-time Markov Chains • M/G/1 and Pollaczek-Kinchin formula; Pareto distribution; M/G/1 with vacations; priority queueing • Networks of queues: Jackson networks, independence hypothesis, Kleinrock's delay formula		
2	90564	INTERNET APPLICATIONS	INTERNET APPLICATIONS	5	ING- INF/0 3	A SCELTA	A Scelta dello Studente	Ingle se		50	75
2	90566	REMOTE SENSING AND SATELLITE IMAGES	REMOTE SENSING AND SATELLITE IMAGES	5		A SCELTA	A Scelta dello Studente	Ingle se		0	0
2	90567	REMOTE	REMOTE	2,5	ING-	A SCELTA	A Scelta dello	Ingle		25	35

		SENSING	SENSING		INF/0		Studente	se			
					2						
					ING-						
		SATELLITE	SATELLITE		INF/0		A Scelta dello	Ingle			
2	90568	IMAGES	IMAGES	2,5	3	A SCELTA	Studente	se		25	35
							Attività				
					ING-		Formative				1
		CYBER	CYBER		INF/0	AFFINI O	Affini o	Ingle			
2	90622	SECURITY	SECURITY	5	5	INTEGRATIVE	Integrative	se		50	75